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Progressive short waves with a narrow frequency band are known to be accompanied 
by long set-down waves travelling with the groups. In finite depth, scattering of 
short waves by a large structure or a varying coastline can radiate free long waves 
which propagate faster than the incident set-down. In  a partially enclosed harbour 
attacked by short waves through the entrance, such free long waves can further 
resonate the natural modes of the harbour basin. In this paper an asymptotic theory 
is presented for a harbour whose horizontal dimensions are much greater than the 
entrance width, which is in turn much wider than the short wavelength. 

1. Introduction 
Excessive oscillations inside a harbour can be detrimental to the mooring and 

docking of ships and the loading or unloading of cargoes. For many harbours, the 
most important natural modes have rather long periods, several minutes to an hour. 
Most studies in the past have been focused on a linear mechanism of resonant 
scattering due to incident long waves such as tsunamis. Since the pioneering work of 
Miles & Munk (1961) the linear resonance theory has been well developed; effective 
numerical techniques now exist and are used in practice (see Mei 1983 for a survey). 
Extensions to account for nonlinear effects which help to distribute energy to higher 
harmonics (Rogers & Mei 1978 ; Lepelletier 1980), boundary friction and flow 
separation a t  the entrance which augments dissipation (It0 1970; Unluata & Mei 
1975), have also received some attention. 

Only a few of the major ports in the world are threatened by tsunamis, however, 
while all of them are under regular assault from storm induced waves of much shorter 
periods (0( 10 s)). Significant oscillations of moored ships a t  the period of several 
minutes are often reported not only in harbours along sea coasts (Santas Lopez & 
Gomez Pina 1988) but also along the shores of the Great Lakes of North America. It 
is therefore very important to develop an effective theory for the prediction of such 
occurrences. 

Because of the sharp difference in frequencies, wind waves are ineffective for 
exciting oscillations in a harbour directly by the linear mechanism of resonant 
scattering. Based on field observations it was suggested long ago that nonlinearity 
may transfer energy from groups of short waves to long surf beats (Munk 1949), 
which can in turn excite harbour oscillations. Longuet-Higgins & Stewart (1962) 
have found theoretically that the radiation stress, due to nonlinear convective 
inertia, can generate long-period set-down waves which follow the envelope of 
progressive short waves with a narrow frequency band. Bowers (1977) was the first 
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to relate this set-down wave to harbour oscillations. Specifically, he treated a semi- 
infinite long channel which has a narrower bay a t  its end. Slowly modulated incident 
waves arriving towards the narrower bay induce not only set-down waves locked to 
the incident and scattered wave envelopes, but also free long waves which propagate 
at the faster speed of the shallow water waves (gh)f. It is these free waves which are 
resonated in the bay under certain conditions. He chose the range of wavelengths so 
that the propagation was one-dimensional both in and outside the bay. Most 
harbours are, however, situated near an open coast, so that the corresponding 
problem involves both two-dimensional diffraction and nonlinearity. Because of 
algebraic complexity, direct perturbation analysis for a general frequency spectrum 
is not easy. The difficulty is amply illustrated by past controversies on the simplest 
problem of nonlinear diffraction by a vertical circular cylinder (see e.g. references 
cited in Mei 1983). 

In  recent years a number of nonlinear diffraction and refraction problems have 
been studied for narrow-banded short waves by using in part the method of multiple 
scales. For example Agnon & Mei (1985), Agnon, Choi & Mei (1988) have treated the 
slow drift of two-dimensional floating cylinders, while Zhou & Liu (1987) extended 
the analysis to the diffraction by a vertical circular cylinder. Agnon & Mei ( 1 9 8 8 ~ )  
also examined the resonance of long trapped waves on a submarine ridge by short 
waves. In  a study of the diffraction of surface waves on a thin vertical barrier in a 
two-layered sea, Agnon & Mei (1988 b )  found that long-period internal waves can be 
excited in the shadow of the short surface waves. In  this paper we shall show that 
similar reasoning can be used to give simple insight into and prediction for the 
nonlinear resonance of long waves in a harbour by groups of short waves. For 
analytical convenience attention will be limited to a sea of constant depth and a 
straight coast. The harbour entrance is assumed to be much wider than the short 
wavelength but much smaller than the largest dimension of the harbour basin as well 
as the long wavelength. Detailed analysis will be given for a narrow bay of 
rectangular plan form. Short waves are dealt with by the geometric optics method 
complemented by the parabolic approximation. Because the short waves change 
rapidly across certain rays, the forced long waves are discontinuous there. A simple 
free long wave is then added to ensure continuity. A second free wave is combined 
with the first to satisfy the no-flux condition along the entire coastline without the 
harbour entrance. Finally, a third free wave is constructed to account for the 
harbour. The dependence of long-wave resonance on the short waves is then 
discussed. Extensions to more complex harbour shapes are made at  the end. 

2. Estimation of scales 
For a simple progressive wave of slope E = ka, it  is convenient and sufficiently 

general to  assume that the slow modulation rate which is related to the narrow width 
of the frequency band Aw/w,  is also of the same order O ( E ) ,  although in nature these 
two small parameters are physically unrelated. Then the wave groups have the 
lengthscales and timescales K-l = O(ek)-l and Q-' = O(ew)-l respectively. In the 
linearized theory of habours, it is well known that the lowest modes including 
the Helmholtz mode, with KL 5 O( 1 )  where L is the typical harbour width or length, 
are amplified the most. The amplification factor depends not only on K L  but also on 
the entrance width W which controls the radiation damping. I n  particular, the 
amplification factor at resonance is of the order 8-l where S = KW for a narrow bay 
and 6 = (logKW)-l for all but the Helmholtz modes in a harbour with comparable 
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dimensions in all horizontal directions. In practice, the typical entrance width is 
W = 0(10(r1000) m, so that kW is rather large compared to unity where k is the 
wavenumber of the wind waves. Thus 

KW414kW, (2.1) 

(2.2) 

To have some idea of the corresponding physical dimensions we consider two narrow 
bays with h = 20 m and assume 6 = &, K = Ek, E = 0.01 ; then 

is quite commonly encountered in reality. Moreover, it is quite common that 

1 2 O(6) 2 O ( 6 ) .  

T (period, s) kh k (m-’) w (m) L (km) xt KW 
18 0.5 0.025 400 5 1.25 0.1 
9 1.2 0.06 167 1 1 0.1 

The width and length in the first and second rows are common for shipping and 
fishing harbours respectively. However, for analytical insight, we begin with a more 
restrictive assumption that 

(2.3) 
(for example, S = O(E;) ) .  As will be shown, the long-wave equations so obtained have 
a broader range of applicability up to S = O ( l ) ,  therefore hold under the conditions 
specified by (2.2). But the approximate solution to be developed is based on (2.3). 
The case of S = O(1) for which resonance is not expected, would require some 
numerical work and will not be discussed here. 

1 > O(S) > O ( d ) ,  

3. Approximate governing equations 
For explaining the reasoning it suffices to consider the simple example of normal 

incidence on a narrow bay of length L and width 2W as sketched in figure 1. 
Assuming irrotational flow in an inviscid fluid, we seek a velocity potential P that 
satisfies Laplace’s equation 

where 6 denotes the free-surface displacement. The bottom depth h is taken to be 
constant and all sidewalls are vertical and impervious; thus, 

V 2 @ = 0  ( - h < z < [ ) ,  (3.1) 

and 

x = 0, if IyI > w, 
ax x = - L ,  iflyl < W ,  

92 = 0 (0 > x > -L ,  Iyl= W).  
aY 

(3.3) 

By Taylor expansion about 2 = 0 the kinematic and dynamic boundary conditions 
on the free surface are: 

[ t + @ x Q + @ , [ ,  = Qz+@D,,+ ... (2 = O ) ,  (3.4) 

g [ + @ t + [ @ t t + $ ( V @ ) 2  = 0 +  ... (2 = 0). (3.5) 

where terms cubic in amplitude are omitted. These two conditions can be combined 
to give 

- ; (V@)*+-@5t@t* l l  -vh*(Otvh@)+... (2 = O ) ,  (3.6) 
at 9 
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FIGURE 1. Definitions for a rectangular bay. Dashed curves indicate the edges of the parabolic 
region of diffraction. 

with (3.7) 

As is known, a simple progressive wavetrain is always accompanied by a second- 
order long wave (set-down) propagating at the group velocity. Owing to the 
diffraction of short waves we further expect free long waves which propagate a t  the 
shallow water speed (gh)a and can be resonated in the bay to the order O(e2/8) .  For 
thin breakwaters or entrances with sharp corners, diffraction of short waves is 
confined in parabolic boundary layers whose width is such that ky = O(kx)t, as 
sketched in figure 1. For the region exterior to these boundary layers we introduce the 

(3.8) 
multiple-scale variables: 21 = ez, y1 = €y, tl = 6t. 

These coordinates are clearly appropriate for the outer regions outside the bay. 
Within the bay, there are also two half parabolic layers. The outer region is of width 
ky = O ( ~ / E )  which is O ( E - ~ )  if 6 = O(d),  and will be treated in terms of y1 with 
the understanding that 1 %- O(kyl) = O(S) % O(ei). 

The perturbation expansions : 

@ = E - q5i-l) +(by) + 8qp + . . . ) + €2 (; -#-I) 2 +qy)+6$?p+. . .  ) , (: (3.9) 

C = €C1 + €2 - CL-1) + [LO) + 6 p  + . . . , (3.10) c 1 and 

are assumed for the outer regions, where 

#-l) = 9%- ( 1) (Z;Xl,yl,tl), $Lm) = (m) (2, Y, x ,  t ; 2 1 ,  Y1, t l ) ,  (3.11) 

Pi1) = CL-l)(~l,Y1,t,), c p  = C~m)(z,Y,t;z,,y,,t,), (3.12) 
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for m = 0, 1 , 2 ,  . . . . The rationale of these expansions is that at the first order in E ,  the 
short-wave displacement (c&) is not resonated. The long-wave displacement which is 
of the second order in E is resonated with the peak amplitude O(e2/&), hence it is 
represented to leading order by ~~f i - ’ ) /S .  Correspondingly, to the leading order, the 
short-wave potential is described by €4; while the resonated long-wave potential is 
described by (€/a) q5;l. Note that the spatial or time derivatives of (€/a) q5I-l) are of 
the order O(s2/6) and are directly related to ez[:-l)/t3. At each order the solution can 
be further decomposed into harmonics with respect to the short-wave frequency w .  
The perturbation procedure is very similar to those applied in our previous papers 
and will only be sketched here. 

4. The short wave 
At the leading order 

of both short and long 
linearized theory : 

and 

O(c) ,  6, is dominated by the short waves, while #Io) consists 
waves. The perturbation equations are those familiar in the 

vzq5y = 0, (4.1) 

along all solid walls. This potential may be written 

q5?) = + (q511 e-i”t + *), (4.5) 

where q511 satisfies the Helmholtz equation in the horizontal plane and the radiation 
condition at infinity. The zeroth harmonic corresponds to a part of the long wave 
and can be shown to depend only on the slow coordinates, as in, for example, Agnon 
& Mei (1985). 

Since kW %- 1, the geometrical optics (ray) and the parabolic approximations can 
be combined here to achieve an analytical solution. Referring to figure 1 we divide 
the fluid domain into regions I and I1 by the edge rays x 2 0, y = k W .  According to 
the ray approximation, we have 

Region I :  11 - 2 1, (4.6) f - I(a-e-ikz +a: eilc(z+ZL) 

h ig cosh k(z + h) (a- e-ibz +.I+ eilc(z+2L) 

‘11 = - 2w cosh kh (4.7) 

(4.8) f,, = g(a-e-ilcx I1 ilcx + a + e  ), Region 11: 

(4.9) 

The amplitudes a_, a: and a:’ of the incident and reflected waves are slowly 
modulated and depend on x1 and t,  according to the law of wave-action conservation. 
From the no-flux condition at  the order O(e2), 

% = 0 on walls along x, = 0, x1 = - L ~ ,  
ax1 

(4.10) 
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where L, = eL, therefore 
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Except for the special cases where 2kL = nn and a is periodic with the period 
2L,/mC,, m = integer, the reflected short wave gll is discontinuous across the edge 
rays (x 3 0, y = f W ) .  This discontinuity can be remedied by inserting the transition 
factor D(x,  y) which accounts for diffraction according to the parabolic approxi- 
mation. The following result is uniformly valid for all x and y except near the corners 
of the bay entrance 

(4.12) 

where D = D-+D+, ( 4 . 1 3 ~ )  

& e-ikx 1 I ik (z+2L)  ++(a:i-a+e I 2ikL) D e ikz ,  
L 1 = 2  - + p + e  

(4.13 b )  

( 4 . 1 3 ~ )  

The superscripts ( . )* refer to the rays y = & W. C and S are the Fresnel cosine and 
sine integrals respectively. A similar expression for is omitted. While the details 
of D are unimportant for later purposes, we note that diffraction is confined in two 
parabolic boundary layers defined by 

k( * y- W )  = O ( ( n k 2 ) ~ ) .  (4.14) 

Thus for kz, = E ~ X  = O(1) the width of these boundary layers is O(ky) = O(F-4). 

5. The long wave and bay resonance 
First we consider the geometrical optics zones I and 11. Substituting (3.9) and 

(3.10) into the Bernoulli equation, separating the orders and taking successively 
temporal and spatial averages over the short-wave scales, which are denoted 
respeotively for any function f by ( f )  and (f ), we get the perturbation equations for 
the zeroth harmonic : 

on z = 0. Denoting 

we get by combining (5.1) and (5.2) 

(5.3) 

(5.5) 
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which is formally identical to (5.2). Similarly by approximating the depth integrated 
law of mass conservation, 

which can be combined according to (5.3) and (5.4) 

(5.9) 

Again, (5.9) is formally identical to (5.8). Use has been made of the fact that q5i-l) and 
9:;) are independent of z ,  which can be established by the perturbation expansions 
of (3.1) to (3.3) and (3.6). Indeed, had we allowed S = O(l ) ,  we would have obtained 
(5.2) and (5.8) without (5.1) and (5.7). Thus (5.5) and (5.9) hold for the long wave 
whether or not it is resonated. In  summary, they are uniformly valid for the broad 
range O(I) 2 8 + 6. 

By cross-differentiation of (5.5) and (5.9) we get 

a + *) --( a i w $ l l p +  *) . (5.10) 
a Y  1 

Equations (5.8) and (5.9) are valid for the outer regions inside and outside the 
harbour whose dimensions are O(kx,,  ky,) = O( l ) ,  with the narrow bay being a special 
case. 

Returning now to the narrow bay, in either zones I or 11, q511 consists of standing 
waves given by (4.6)-(4.8), the right-hand sides of (5.10) can be readily evaluated: 

(5.11) 

Use has also been made of the functional forms of a- and a, in (4.11). 
Prom here on it is convenient to work with - ( l / g )  a$,/at, which has the dimension 

of, but is in general not, the free-surface displacement, in view of the quadratic terms 
in (5.5). Hence we introduce the notation & )  = ( -  l / g )  ,/atl for all parts of the 
long waves to be identified by the subscripts. 

The inhomogeneous solution of (5.10) represents the set-down long wave that is 
bound to the short-wave groups. The corresponding part of 6, will be denoted by 6, 
where 

(5.12) 
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with (5.13) 

and the symbol (") signifying the oscillatory part of the long-period motion. 

modulated with the maximum amplitude a, 
We shall only consider the special case where the incident wave is sinusoidally 

a- = a,cos52 t,+- , ( 3 (5.14) 

which corresponds to two sinusoidal wavetrains with equal amplitudes and slightly 
different frequencies. Note that 52 = 0(1), because of the scaling in $3, unlike the 
convention in $2. The set-down long wave is given by 

Eg = s l g + s g t  (5.15a) 

where (5.15b) 

is bound to the incident wave envelopes, and 

is bound to the reflected wave envelopes. 
In principle, connection of the long waves across the edge rays must be achieved 

by matching them with a near-field approximation which depends on x1 and t ,  and is 
valid in the diffraction boundary layers. Using the same argument as in Agnon & Mei 
(19883) as outlined here in the Appendix, such a matching analysis leads to the 
simple conclusion that the long-wave potential q5L on opposite sides of the diffraction 
boundary layer can be joined by equating q5L and aq5L/i3y1 directly. This of course 
implies the same for E L .  Since the set-down long waves in (5.15) are in general 
discontinuous across the edge rays x 2 0, y = f W ,  continuity of EL and its y1 
derivative requires the addition of free long waves which are homogeneous solutions 
of (5.10), i.e. 

EL = E g + E f .  (5.16) 

Since Ef corresponds to the homogeneous solution of (5.5) and (5.9) it is the 
displacement Cf of the free long waves. 

We now proceed to find the free long waves by first dividing it into two parts: 

Cf = 6; + 6;- (5.17) 

Inside the bay, Ei = 0. Outside the bay, 6; is a homogeneous solution of the 
Helmholtz equation, 

(5.18) V;E+KFE; = 0 where Kf = 7 = O(1). 

It is also required to satisfy the no-flux condition along the entire coast as if the bay 
did not exist: 

!?G = 0 (XI = 0, lyll < co). (5.19) 

252 

(9h)r 

ax1 
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Furthermore, we require the sum tg + 6; and its y1 derivative to be continuous across 
the edge rays along y1 = k Wl for all xl 2 0 :  

[ t g + t ; l ; K ; :  = 0, (5.20) 

(5.21) 

where Wl = EW. The second part 6; must then satisfy the radiation condition at  
infinity and ensure the continuity of tL and atL/axl across the harbour entrance along 
x1 = 0 for all lyll < W,, i.e. 

(6; +&lo-  = ('5 + F + &lo+ (5.22) 

0- O+ 

(5.23) and 

Since & and ag#)xl are already continuous there and (5.19) holds on the outside, 
(5.22) and (5.23) reduce to 

G ) o - -  ( t 3 0 +  = (5;)0+? 

and 

(5.24) 

(5.25) 

Now 5; is the part that gives rise to resonance within the bay once the forcing 
function 6; is known along the bay entrance as indicated in (5.24). 

The solution for 6; can be further split into two parts 

E = ( a 1  + ( t ; ) Z ,  (5.26) 

where (Ei)l satisfies the inhomogeneous jump conditions (5.20) and (5.21) along the 
edge rays for all x1 but not the boundary condition (5.19) : 

(g) e l - 2  - lQaie-(K:-K:)Jwi cash ((K2-K;L)iyl) g Re [(I -e2iKgh) eiKgzi-ziQti 1 iflYll < Wl 
= -$&a: e-(%-KRtui sinh ((Ki -Kp2); Wl) Re [( 1 - e2iKgLi) eiKgzi-2iQti 1 iflYll > w,, 

(5.27) 

where K g  = 2sZ/Cg and Re ( . ) denotes the real part of (. ). For K,  Wl = O(6) 4 1 we 
may approximate this result by 

(5.28) 

In view of (5.15c), (& is approximately the difference between the reflected set- 
downs in I and 11; the incident set-downs being continuous. Now the remaining part 

must satisfy the boundary conditions on the coast x1 = 0 

and be outgoing waves at  infinity. The solution to this radiation problem is, with an 
error of order O(6) 

20 FLM 208 
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where Hi1) is the Hankel function of the first kind and 
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- r1 = (z? + (y1-y;)")". (5.31) 

can be estimated by Along the bay entrance, z1 = 0, (yll < W,, the magnitude of 
its average: 

(5.32) 

which is clearly of the order O(6).  Thus, along the bay entrance z1 = 0+, lyll < Wl we 
have, in particular, 

fl; % (fli)l+O(S) = +QaiRe[e-2iRtlr]+O(S) = ([g)II-([g)I, (5.33) 

2isinKgL, eiKgL1. (5.34) with r = 1 - e2iKgL1 = - 

Since the boundary-value problem for the second part 5; of the free long wave in and 
outside the bay is now formally identical to that of the linearized problem when the 
normally incident long wave has the frequency 2652 and the amplitude it;, we obtain 
the bav resnonse : 

,$' = +Qai cos [Kf(xl +Ll)] Re -e-2i*t1 iz' I? (5.35) 

where 2 is the bay impedance known in the linearized theory of harbour resonance. 
For small K,  Wl it is approximately 

2 = cos (K, L,) + - 2Kf'sin(K,Ll)log-- 2yKf ' X, W, sin (K,L,), (5.36) 
x xe 

with logy = 0.5772157 ... = Euler's constant (see Mei 1983; or the original paper of 
Miles & Munk (1061) whose formula is slightly different owing to a different 
approximation a t  the entrance). 

The amplitude of the free long wave in the bay is 

which increases with the square of the incident short 

1 - tanh2 kh -- I(: 'I ' 

waves. The factor 

\ -1 

(5.37) 

(5.38) 

varies from Qh - 0 for kh % 1 to Qh - ikh for kh 4 1. The factor r depends on both 
kh through C, and the bay length L,  and is caused by the difference between the 
envelopes reflected from the coast and from the innermost boundary of the bay. It 
is oscillatory in KgLl and vanishes a t  KgLl  = nx when the two envelopes are 
perfectly in phase. The amplification factor A/ka: is plotted in figure 2 for a range 
of kh and KfLl by varying L,  continuously. While the resonant peaks are still 
approximately a t  KfL1 = (n+$)x  when 121 is small, the peak height may change 
drastically with K,  L, where Kf/K, = C,/(gh)i decreases monotonically from 1 to + as 
kh increases from 0 to 00. The zeros occur a t  the zeroes of sinK,L,. 

If, for the same rectangular bay, the end a t  x1 = -L, absorbs all the short waves 



Long-period oscillations in a harbour 605 

i 

0 2 4 6 8 10 
4 L, 

FIGURE 2. Amplification factor IAl/kat for a long bay. The end at z = -L is perfectly reflecting 
for short and long waves. 52 = 1, E = 0.05, and K ,  W, = 0.15. 

0 2 4 6 8 10 

Kt L, 
FIGURE 3. Amplification factor JAl/ka: for a long bay. The end at x = -L absorbs all short 

waves but reflects all long waves. Q = 1 ,  E = 0.05 and K ,  W, = 0.15. 

but reflects all the long waves, there is no reflected set-down and the factor Tin (5.29) 

Q4 reduces to unity so that 
A = -  

2 2  * 
(5.39) 

The effect of bay length is solely represented by the harbour impedance 2. By 
varying L, continuously, we plot the typical dependence of A on Kf L,  and kh in figure 
3. In both figures 2 and 3 the response increases with decreasing kh because of Q. 

If KW, is not small, the approximation leading to (5.28) cannot be made; but the 
forced oscillation problems for (& and can be solved numerically by existing 
means. Since resonance is then weak or absent, it is physically less interesting and we 
do not pursue it here. 

f ( l - f  
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FIGURE 4. Definitions for a harbour of general basin form. Dashed curves indicate the edges of 
the parabolic region of diffraction. 

6. Harbours of other boundaries 
The analysis in the last section indicates that for a narrow bay open to a straight 

coast, resonance by groups of sinusoidally modulated waves is essentially determined 
by the difference of reflected wave envelopes near the harbour entrance. It is now 
easy to infer the modifications needed under other circumstances. For simplicity we 
assume that all conditions outside the harbour (normally incident wave, constant 
depth, straight coast) remain the same. However, for resonance the parameter S must 
now be reinterpreted as (lnK, W,)-l for non-Helmholtz modes and it is small only for 
extremely small K,W,. This implies a very small 8 and a very narrow frequency 
bandwidth. As the more general case can again be solved numerically we only discuss 
small (lnKW,)-' for analytical understanding of resonance. 

Let the plan form of the harbour be two-dimensional general as sketched in figure 
4, and consider two special cases. In case (i) the side AA' opposite to the entrance is 
totally reflective and parallel to the breakwaters. In case (ii) the side AA' absorbs all 
the incident short waves but reflects all long waves. In  either case we divide the basin 
by the edge rays into regions I and 11. 

Similar to (5.15b) and (5.15c), let the incident and reflected set-downs be 
represented by 

($, g) = gu: Re [(Si eTiKfzl, S, eiKfzl) e-2iRtl], (6.1) 

respectively. The amplitudes Si and S, in the subregions I and I1 are listed in table 1.  
Along the harbour entrance lyll < W,, the forcing for .!$ is 

Use has been made of the continuity of (t,)I and (5.33). This forcing intensity is 
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Harbour Inside Harbour Outside 

Subregion I I1 I I1 
Incident, S, : 1 0 1 1 
Reflected, S,  (i) :  e-21KgL,  0 e - 2 i K g L I  1 
Reflected, S,  (ii): 0 0 0 1 

TABLE 1. 

twice that for a narrow bay where the short waves that enter do not escape back to 
sea. 

For any other complex shape of the basin boundary the forcing at  the entrance is 
also the same, although the harbour response may differ. This is due to the 
assumption of a wide entrance k W  % 1 so that the reflected set-downs in I1 are the 
same inside and outside the harbour. We may conclude that the free long waves 
generated nonlinearly in a large harbour by short waves are approximately equal to 
those generated linearly by incident long waves of frequency 2~52 and amplitude Qa;. 

Finally, the breakwaters of many ports are of rubble mound construction through 
which partial transmission of both short and long waves is possible. As is already 
clear, when short, narrow-banded progressive waves are interrupted by either 
refraction or scattering, free shallow water waves are produced in addition to locked 
set-downs. We can therefore expect the breakwater porosity to affect the long-period 
oscillations in the basin. This, as well as the effects of variable depth inside and 
outside the harbour, are of considerable practical importance and deserve further 
study. 

During this study C. C. Mei was supported in part by US Office of Naval Research 
through Contract N00014-87-K-0121 and by US National Science Foundation 
through Grant 8813121-MSM. He also thanks 1’Institute de MBcanique de Grenoble, 
France, where he worked on a revision of this paper during his sabbatical stay. 

Appendix. Long-period motion in the diffraction boundary layer 
Let the positive x-axis be the axis of the diffraction boundary layer. Sine ky, -g 1 

within the layer it is sufficient to use the fast coordinate y to describe the lateral 
variation in the interior and regard the parabolic boundaries ky = O((kx)$ = O ( E - ~ )  
as the outer limits. The long-period potential, denoted here by (3) = $Jy, z,  x,, t , ) ,  
then satisfies 

and 

(&+&)$L = O(e3) ( -h  < z < 0) ,  

On the mean free surface z = 0, the kinematic condition 

can be averaged in x and t with respect to the short-wave scales. Since the left-hand 
side gives 

we get on the average, 
(A 4) 4,) = 0 ( E 3 ) ,  
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Using the first-order solution, we may write the dominant part of the right-hand side 

= - iqhl1 Vi $Tl + * = - iuk21$,,12 + * = 0, (A 6) 

because $11 satisfies exactly the horizontal Helmholtz equation in the diffraction 
zone. Thus, * = o(63). (A 7) ax 
Equations (A l ) ,  (A 2) and (A 7 )  imply that $L is linear in y and independent of z. 

The two-term inner limits of the far fields on opposite sides of the diffraction 
boundary layer are 

(A 8) 
W L  

aY1 
# L ( % Y l =  L-O,t,)+Y,-t~,,y, = f O , t , ) .  

Clearly, matching of the far fields with the near field implies the continuity of 4L and 
a$L/i3yl themselves along the positive x,-axis, and the same for tL and i3cL/ay1. 
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